Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp.

نویسندگان

  • W Leggat
  • M R Badger
  • D Yellowlees
چکیده

The presence of a carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. was investigated. Its existence was postulated to explain how these algae fix inorganic carbon (C(i)) efficiently despite the presence of a form II Rubisco. When the dinoflagellates were isolated from their host, the giant clam (Tridacna gigas), CO(2) uptake was found to support the majority of net photosynthesis (45%-80%) at pH 8.0; however, 2 d after isolation this decreased to 5% to 65%, with HCO(3)(-) uptake supporting 35% to 95% of net photosynthesis. Measurements of intracellular C(i) concentrations showed that levels inside the cell were between two and seven times what would be expected from passive diffusion of C(i) into the cell. Symbiodinium also exhibits a distinct light-activated intracellular carbonic anhydrase activity. This, coupled with elevated intracellular C(i) and the ability to utilize both CO(2) and HCO(3)(-) from the medium, suggests that Symbiodinium sp. does possess a carbon-concentrating mechanism. However, intracellular C(i) levels are not as large as might be expected of an alga utilizing a form II Rubisco with a poor affinity for CO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between antioxidant traits of Symbiodinium sp. symbiotic dinoflagellate extract under physicochemical factors during different seasons in Persian Gulf and Gulf of Oman

Coral bleaching, loss of symbiotic algae of Symbiodinium sp. or photosynthetic microalgae pigments from their coral host have become commonplace in recent decades due to the rising of sea temperatures and changes in physicochemical factors. It is essential to study the susceptibility of corals to bleaching, the physiology of its symbiotic algae, and its capacity to cope with abiotic stress. Oxi...

متن کامل

Specific growth rate and mitotic index in dinoflagellate Symbiodinium sp. isolateed from sea anemone Stichodactyla haddoni

The cultivation techniques of dinoflagellates is often problematic due to their sensitivity to hydrodynamic (shear) stress. For this study, sea anemone was collected from the east coast of Hormuz Island. First, we extracted symbiotic dinoflagellate, Symbiodinium sp. from Stichodactylla haddoni using manually homogenization. After transferring to the laboratory, samples were cultured in differen...

متن کامل

Comparison of an inducible oxidative burst in free-living and symbiotic dinoflagellates reveals properties of the pseudopterosins.

An oxidative burst in free-living and symbiotic dinoflagellates induced by physical stress is defined and characterized. The oxidative burst occurred within 1 min of physical injury caused by short pulses of low frequency sonic sound (20 kHz, 10 s pulses). The quantities of reactive oxygen species were measured using a spectrofluorometric assay and standardized to hydrogen peroxide. Using pharm...

متن کامل

Heat Induction of Cyclic Electron Flow around Photosystem I in the Symbiotic Dinoflagellate Symbiodinium.

Increases in seawater temperature impair photosynthesis (photoinhibition) in the symbiotic dinoflagellate Symbiodinium within cnidarian hosts, such as corals and sea anemones, and may destroy their symbiotic relationship. Although the degree of photoinhibition in Symbiodinium under heat stress differs among strains, the differences in their responses to increased temperatures, including cyclic ...

متن کامل

The acquisition of exogenous algal symbionts by an octocoral after bleaching.

Episodes of coral bleaching (loss of the symbiotic dinoflagellates) and coral mortality have occurred with increasing frequency over the past two decades. Although some corals recover from bleaching events, the source of the repopulating symbionts is unknown. Here we show that after bleaching, the adult octocoral Briareum sp. acquire dinoflagellate symbionts (Symbiodinium sp.) from the environm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 121 4  شماره 

صفحات  -

تاریخ انتشار 1999